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Abstract

A component-based approach is introduced for fast and flexible solution of parameter-dependent

eigenproblems. We consider a shifted version of the eigenproblem where the left hand side operator

corresponds to an equilibrium between the stiffness operator and a weighted mass operator. This permits

to apply the Static Condensation Reduced Basis Element method, a domain synthesis approach with

reduced basis approximation at the intradomain level. We provide eigenvalue a posteriori error estimators

and we present various numerical results of modal analysis of structures. We are able to obtain several

orders of magnitude speed-up compared to a classical Finite Element Method.
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1. Introduction

In structural analysis, eigenvalue computation is necessary to find the periods at which a structure

will naturally resonate. This is especially important for instance in building engineering, to make sure

that a building’s natural frequency does not match the frequency of expected earthquakes. In the case

of resonance, a building can endure large deformations and important structural damage, and possibly

collapse. The same considerations apply to automobile and truck frames, where it is important to avoid

resonance with the engine frequencies. Eigenproblems also appear when considering wind loads, rotating

machinery, aerospace structures; in some cases it is also desirable to design a structure for resonance,

like certain microelectromechanical systems.

With improvement in computer architecture and algorithmic methods, it is now possible to tackle

large-scale eigenvalue problems with millions of degrees of freedom; however the computations are still

heavy enough to preclude usage in a many-query context, such as interactive design of a parameter-

dependent system. In this paper, we present an approach for fast solution of eigenproblems on large

systems that present a component-based structure – such as building structures.

For the numerical solutions of partial differential equations (PDE) in component-based systems, sev-

eral computational methods have been introduced to take advantage of the component-based structure.

The main idea of these methods is to perform domain decomposition, and to use a common model order

reduction for each family of similar components. The first and classical approach is the component
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mode synthesis (CMS) [1, 2], which combines static condensation at the interdomain level with eigen-

modal truncation at the intradomain level. For parameter-dependent equations, an alternative model

order reduction is to use reduced basis (RB) approximations. This idea was first introduced in the re-

duced basis element (RBE) method [3], with a Mortar approach for domain decomposition. In this case

the RB approximations provide a model order reduction with certified accuracy over a specified range

of parameters, and the same RB spaces can be used for similar components with different parameter

values.

In [4], a static condensation RBE (SCRBE) approach is developed for elliptic problems. It brings

together ideas of CMS and RBE by considering standard static condensation at the interdomain level and

then RB approximation at the intradomain level. In an Offline stage performed once, the RB space for a

particular component is designed to reflect all possible function variations on the component interfaces

(which we shall denote ports); components are thus completely interchangeable and interoperable. During

the Online stage, any system can be assembled from multiple instantiations of components from a

predefined library; we can then compute the system solution for different values of the component

parameters in a prescribed parameter domain. The Online stage of the SCRBE is much more flexible

than both the Online stage for the standard RB method, in which the system is already assembled and

only parametric variations are permitted, and the Online stage of the classical (non-static-condensation)

RBE method, in which the RB intradomain spaces already reflect anticipated connectivity.

In this paper, we present an extension of the SCRBE to eigenproblems. The new aspects are the

following. First, the SCRBE normally takes advantage of linearity, which is lost when considering

eigenproblems. Hence we begin by reformulating the eigenproblem using a shift σ of the spectrum in

order to recover a linear problem. Finding the eigenvalues is then performed at a higher level: using a

direct search method, we find the values of the shift σ that correspond to singular systems. Second, we

provide a posteriori error estimators of the eigenvalues, not only with respect to RB approximations but

also in the context of port reduction.

In the context of CMS approaches for eigenproblems, out method provides some important features:

treatment of parameter-dependent systems (as explained above), optimal convergence, and port reduc-

tion. The classical CMS only achieves a polynomial convergence rate [5, 6] with respect to the number

of eigenmodes used at the intradomain level. This can be improved to an infinite convergence rate by

using overlaping components [6], but at the expense of losing simplicity and flexibility of component

connections. Our method somehow provides an optimal trade-off since it retains the interface treat-

ment of classical CMS – allowing flexibility of component connections – while achieving an exponential

convergence rate with respect to the size of RB spaces at the intradomain level.

We also provide port reduction so as to increase even more the speed up. Recent CMS contributions

consider several port economizations (or interface reduction strategies): an eigenmode expansion (with

subsequent truncation) for the port degrees of freedom is proposed in [5, 7]; an adaptive port reduc-

tion procedure based on a posteriori error estimators for the port reduction is proposed in [8]; and an

alternative port reduction approach, with a different bubble function approximation space, is proposed
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for time-dependent problems in [9]. We can not directly apply CMS port reduction concepts in the

parameter-dependent context, as the chosen port modes must be able to provide a good representa-

tion of the solution for any value of the parameters. In this paper, we adapt to parameter-dependent

eigenproblems a port approximation and a posteriori error bound framework introduced in [10] for

parameter-dependent linear elliptic problems.

The paper proceeds as follows. In Section 2, we present the general eigenproblem and its shifted

formulation; we then describe the static condensation procedure. In Section 3, we add reduced basis

approximations and develop a posteriori error estimators for the eigenvalues with respect to the corre-

sponding values obtained by the “truth” static condensation of Section 2. In section 4, we introduce port

reduction and provide as well a posteriori error estimators for the eigenvalues. Finally, in Section 5, we

present numerical results on bridge structures to illustrate the computational efficiency of the approach.

2. Formulation

2.1. Problem statement

We suppose that we are given an open domain Ω ⊂ Rd, d = 1, 2 or 3, with boundary ∂Ω. We then

let X denote the Hilbert space

X ≡ {v ∈ H1(Ω): v|∂ΩD
= 0} ,

where ∂ΩD ⊂ ∂Ω is the portion of the boundary on which we enforce Dirichlet boundary conditions. We

suppose that X is endowed with an inner product (·, ·)X and induced norm ‖ · ‖X . Recall that for any

domain O in Rd,

H1(O) ≡ {v ∈ L2(O) : ∇v ∈ (L2(O))d}, where L2(O) ≡ {v measurable over O :

∫

O
v2 finite }.

Furthermore, let Y ≡ L2(Ω).

We now introduce an abstract formulation for our eigenvalue problem. For any µ ∈ D, let a(·, ·;µ) :

X × X → R, and m(·, ·;µ) : X × X → R denote continuous, coercive, symmetric bilinear form with

respect to X and Y , respectively. We suppose that XN ⊂ X is a finite element space of dimension N .

Given a parameter µ ∈ D ⊂ RP , where D is our parameter domain of dimension P , we find the set of

eigenvalues and eigenvectors (λ(µ), u(µ)), where λ(µ) ∈ R>0 and u(µ) ∈ XN satisfy

a(u(µ), v;µ) = λ(µ)m(u(µ), v;µ), ∀v ∈ XN , (1)

m(u(µ), u(µ);µ) = 1. (2)

We assume for simplicity that the eigenvalues λn(µ) are distinct, of mutiplicity one, and sorted such that

0 < λ1(µ) < λ2(µ) . . . < λN (µ).

We now define a surrogate eigenvalue problem that will be convenient for subsequent developments.

For a given “shift factor” σ ∈ R≥0, we modify (1), (2) such that for any µ ∈ D, we find τ(µ, σ) ∈ R and

χ(µ, σ) ∈ XN that satisfy

B(χ(µ, σ), v;µ;σ) = τ(µ, σ)a(χ(µ, σ), v;µ), ∀v ∈ XN , (3)

a(χ(µ, σ), χ(µ, σ);µ) = 1. (4)
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Here

B(w, v;µ;σ) ≡ a(w, v;µ)− σm(w, v;µ) (5)

is our “shifted” bilinear form. Note that we change the bilinear form on the right hand side from m(·, ·)

to a(·, ·), which corresponds to a different norm. This choice is motivated by error estimation, presented

later in the paper, as it permits to derive relative error estimates for the eigenvalue λn(µ).

We also sort the set of eigenvalues such that τ1(µ, σ) < τ2(µ, σ) . . . < τN (µ, σ) – note that due to

the shift the first eigenvalues can now be negative. It is also clear that χn(µ, σ) = 1√
λn(µ)

un(µ) for any

σ ∈ R, so we shall henceforth write χn(µ). Also

τn(µ, σ) =
λn(µ)− σ
λn(µ)

, (6)

so that

τn(µ, σ) > 0, if 0 ≤ σ < λn(µ), (7)

τn(µ, σ) = 0, if σ = λn(µ), (8)

τn(µ, σ) < 0, if σ > λn(µ), (9)

for n = 1, . . . ,N .

2.2. Static Condensation

We now move to the component level. We suppose that the system domain is naturally decomposable

into I interconnected parametrized components. Each component i is associated with a subdomain Ωi,

where

Ω =

I⋃

i=1

Ωi, Ωi ∩ Ωi′ = ∅, for i 6= i′ .

We say that components i and i′ are connected at global port p if Ωi ∩ Ωi′ = Γp 6= ∅. We also say that

γji = Γp and γj
′

i′ = Γp are local ports of components i and i′ respectively. We denote by nΓ the total

number of global ports in the system, and we denote by nγi the total number of local ports in component

i. We assume that the FE space XN conforms to our components and ports, hence we can define the

discrete spaces XNi and ZNp that are simply the restrictions of XN to component i and global port p. For

given i, let XNi;0 denote the “component bubble space” — the restriction of XN to Ωi with homogeneous

Dirichlet boundary conditions on each γji , 1 ≤ j ≤ n
γ
i ,

XNi;0 ≡ {v|Ωi
: v ∈ XN ; v|γj

i
= 0, 1 ≤ j ≤ nγi }.

We denote by NΓ
p the dimension of the port space ZNp associated with global port p, and we say that

the global port p has NΓ
p degrees of freedom (dof). For each component i, we denote by k′ a local

port dof number, and Ki the total numbers of dof on its local ports, such that 1 ≤ k′ ≤ Ki. We then

introduce the map Pi(k′) = (p, k) which associate a local port dof k′ in component i to its global port

representation: global port p and dof k, 1 ≤ k ≤ NΓ
p .

To formulate our static condensation procedure we must first introduce the basis functions for the

port space ZNp as {ζp,1, · · · , ζp,NΓ
p
}. The particular choice for these functions is not important for now,
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but it becomes critical when dealing with port reduction – we refer to Section 4. For a local port dof

number k′ such that Pi(k′) = (p, k), we then introduce the interface function ψik′ ∈ XNi , which is the

harmonic extension of the associated port space basis function into the interior of the component domain

Ωi, and satisfies ∫

Ωi

∇ψik′ · ∇v = 0, ∀v ∈ XNi;0, (10)

ψik′ =





ζp,k on Γp

0 on γji 6= Γp, 1 ≤ j ≤ nγi .
(11)

If components i and j are connected, then for each matching local port dofs ki and kj such that Pi(ki) =

Pj(kj) = (p, k), we define the global interface function Ψp,k ∈ XN as

Ψp,k =





ψiki on Ωi

ψjkj on Ωj

0 elsewhere .

(12)

We will now develop an expression for χn(µ) which just involves dof on the ports by virtue of

elimination of the interior dof given that σ = λn(µ) – starting from (13) to finally arrive at (18). Let

us suppose that we set σ = λn(µ) (for some n) so that the right-hand side of (3) vanishes. Then, for

χn(µ) ∈ XN we have

B(χn(µ), v;µ;σ) = 0, for all v ∈ XN .

We then express χn(µ) ∈ XN in terms of “interface” and “bubble” contributions,

χn(µ) =

I∑

i=1

bi(µ, σ) +

nΓ∑

p=1

NΓ
p∑

k=1

Up,k(µ, σ)Ψp,k, (13)

where the Up,k(µ, σ) are interface function coefficients corresponding to the port p, and bi(µ, σ) ∈ XNi;0.

Here χn is independent of σ, but we shall see shortly that we will need bi and Uk,p to be σ-dependent in

general.

We then restrict to a single component i to obtain

Bi(χn(µ), v;µ;σ) = 0, for all v ∈ XNi;0, (14)

where Bi(w, v;µ;σ) ≡ ai(w, v;µ)− σmi(w, v;µ), and where ai and mi indicate the restrictions of a and

m to Ωi, respectively. Substitution of (13) into (14) leads to

Bi(bi(µ, σ), v;µ;σ) +

Ki∑

k=1

UPi(k)(µ, σ)Bi(ψi,k, v;µ;σ) = 0, (15)

for all v ∈ XNi;0.

It can be shown from linearity of the above equation that we can reconstruct bi(µ, σ) as

bi(µ, σ) =

Ki∑

k=1

UPi(k)(µ, σ)bi,k(µ, σ),
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where bi,k(µ, σ) ∈ XNi;0 satisfies

Bi(bi,k(µ, σ), v;µ;σ) = −Bi(ψi,k, v;µ;σ), ∀v ∈ XNi;0. (16)

Let (λi,n(µ), χi,n(µ)) ∈ R×XNi;0 denote an eigenpair associated with the n local eigenproblem

ai(χi,n(µ), v;µ) = λi,n(µ)mi(χi,n(µ), v;µ), ∀v ∈ XNi;0, (17)

then, since

inf
v∈XNi;0

Bi(v, v;µ;σ)

‖v‖2X,i
= inf

v∈XNi;0

ai(v, v;µ)− σmi(v, v;µ)

‖v‖2X,i

≥ inf
v∈XNi;0

ai(v, v;µ)− σmi(v, v;µ)

mi(v, v;µ)
inf

v∈XNi;0

mi(v, v;µ)

‖v‖2X,i

= (λi,1(µ)− σ) inf
v∈XNi;0

mi(v, v;µ)

‖v‖2X,i
,

the bilinear form Bi(·, ·;µ;σ) is coercive on XNi;0 if σ < λi,1(µ), where λi,1(µ) is the smallest eigenvalue of

(17). Hence (16) has a unique solution under this condition. Note that we expect that λi,1(µ) > λ1(µ),

and even λi,1(µ) > λn(µ) for n = 2 or 3 or 4 — of course in practice the balance between λn and λi,n′

will depend on the details of a particular problem.

Now for 1 ≤ k ≤ NΓ
p and each p, let

Φp,k(µ, σ) = Ψp,k +
∑

i,k′s.t.Pi(k′)=(p,k)

bi,k′(µ, σ),

and let us define the “skeleton” space XS(µ, σ) as

XS(µ, σ) ≡ span{Φp,k(µ, σ) : 1 ≤ p ≤ nΓ, 1 ≤ k ≤ NΓ
p }.

This space is of dimension nsc =
∑nΓ

p=1NΓ
p . We restrict (13) to a single component i to see that for

σ = λn(µ) we obtain

χn(µ)|Ωi
=

Ki∑

k=1

UPi(k)(µ, σ) (bi,k(µ, σ) + ψi,k) .

This then implies

χn(µ) =

nΓ∑

p=1

NΓ
p∑

k=1

Up,k(µ, σ) Φp,k(µ, σ) ∈ XS(µ, σ). (18)

Then, for σ = λn(µ) and µ ∈ D, we are able to solve for the coefficients Up,k(µ, σ) from the static

condensation eigenvalue problem on XS(µ, σ): find χn(µ) ∈ XS(µ, σ), such that

B(χn(µ), v;µ;σ) = 0, ∀v ∈ XS(µ, σ), (19)

a(χn(µ), χn(µ);µ) = 1. (20)

We now relax the condition σ = λn(µ) to obtain the following problem: For σ ∈ [0, σmax] and µ ∈ D,

find (τn(µ, σ), χn(µ, σ)) ∈ (R, XS(µ, σ)), such that

B(χn(µ, σ), v;µ;σ) = τn(µ, σ)a(χn(µ;σ), v;µ), ∀v ∈ XS(µ, σ), (21)

a(χn(µ, σ), χn(µ, σ);µ) = 1. (22)
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It is important to note that this new eigenproblem (21) (22) differs from (3) (4) in two ways: first, we

consider a subspace XS(µ, σ) of XN , and as a consequence τn(µ, σ) ≥ τn(µ, σ); second, the subspace

XS(µ, σ), unlike XN , depends on σ, and furthermore only for σ = λn does the subspace XS(µ, σ)

reproduce the eigenfunction χn(µ). We now show

Proposition 2.1. Suppose σ < λi,1(µ) for each 1 ≤ i ≤ I to ensure that the static condensation is

well-posed.

(i) τn(µ, σ) ≥ τn(µ, σ), n = 1, . . . ,dim(XS(µ, σ)),

(ii) τn(µ, σ) = 0 if and only if σ = λn(µ),

(iii) σ = λn(µ) if and only if there exists some n′ ≤ n such that τn′(µ, σ) = 0.

Proof. (i) The case n = 1 follows from the Rayleigh quotients

τ1(µ, σ) = inf
w∈XN

B(w,w;µ;σ)

a(w,w;µ)
, (23)

and

τ1(µ, σ) = inf
w∈XS(µ,σ)

B(w,w;µ;σ)

a(w,w;µ)
, (24)

and fact that XS(µ, σ) ⊂ XN .

For n > 1, the Courant-Fischer-Weyl min-max principle [11] states that for an arbitrary n-dimensional

subspace of XN , Sn, we have

ηn(µ, σ) ≡ max
w∈Sn

B(w,w;µ;σ)

a(w,w;µ)
≥ τn(µ, σ). (25)

Let Sn ≡ span{χm(µ, σ),m = 1, . . . , n} ⊂ XS(µ, σ). Then ηn(µ, σ) = τn(µ, σ), and the result follows.

(ii) This equivalence is due to (8).

(iii) (⇐) Suppose σ = λn(µ) for some n, then by construction χn(µ, σ) ∈ XS(µ, σ). Since the same

operator B appears in both (19) and (21), it follows that χn(µ, σ) is also eigenmode for (21), (22) with

corresponding eigenvalue 0. That is, for some n′, τn′(µ, σ) = 0 is an eigenvalue of (21),(22). Moreover

τn+1(µ, σ) ≥ τn+1(µ, σ) > 0 so n′ ≤ n. We note that if n > 1, we do not necessarily capture χm(µ) in

XS(µ, σ) for m = 1, 2, . . . , n− 1, hence it is possible that n′ < n. On the other hand, if n = 1, then we

must have χ1(µ, σ) = χ1(µ, σ).

(⇒) Suppose τn′(µ, σ) = 0 for some index n′. Then χn′(µ, σ) satisfies (19), (20), or equivalently,

(3), (4) for τn(µ, σ) = 0. From part (ii) of this Proposition, this implies that σ = λn(µ). Moreover

τn+1(µ, σ) ≥ τn+1(µ, σ) > 0 so n′ ≤ n.

A stronger result that will be important for the following can be obtained assuming

Hypothesis 2.1. For 1 ≤ n ≤ nsc the functions σ → τn(µ, σ) have exactly one root.

Corollary 2.1. If Hypothesis 2.1 holds, σ = λn(µ) if and only if τn(µ, σ) = 0.
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Proof. From Proposition 2.1(iii), we have that σ = λ1(µ) if and only if τ1(µ, σ) = 0. Then using

Hypothesis 2.1 and Proposition 2.1(iii), it is easy to show by recurrence that σ = λn(µ) if and only if

τn(µ, σ) = 0 for 1 ≤ n ≤ nsc.

Lemma 2.1. We have that
∂τn(µ, σ)

∂σ
= − 1

λn(µ)
, (26)

for each n = 1, 2, . . . ,N .

Proof. We set v = χn(µ) in (3), to obtain

B(χn(µ), χn(µ);µ;σ) = τn(µ, σ)a(χn(µ), χn(µ);µ) = τn(µ, σ), (27)

where we employed (4) in the last equality above. We note that χn(µ) is independent of σ, and differ-

entiate with respect to σ to obtain

∂τn(µ, σ)

∂σ
=

∂

∂σ
B(χn(µ), χn(µ);µ;σ)

=
∂

∂σ
[a(χn(µ), χn(µ);µ)− σm(χn(µ), χn(µ);µ)]

= −m(χn(µ), χn(µ);µ)

= − 1

λn(µ)
m(un(µ), un(µ);µ) = − 1

λn(µ)
.

However, the result does not apply to τn(µ, σ): we cannot apply the argument from the proposition

to (21), (22) since in general χn(µ, σ) depends on σ. We can still state the following

Proposition 2.2. Assuming that τn(µ, ·) is differentiable at λn(µ) and Hypothesis 2.1 holds, then

∂τn(µ, λn)

∂σ
= − 1

λn(µ)
.

Proof. We know that τn(µ, λn(µ)) = τn(µ, λn(µ)) = 0, ∂τn(µ,σ)
∂σ = − 1

λn(µ) and τn(µ, σ) ≥ τn(µ, σ). So

we have

∀h < 0,
τn(µ, λn(µ) + h)

h
≤ − 1

λn(µ)
,

∀h > 0,
τn(µ, λn(µ) + h)

h
≥ − 1

λn(µ)
,

Since τn(µ, ·) is differentiable at λn(µ), we have

∂τn(µ, λn(µ))

∂σ
= lim
h→0−

τn(µ, λn(µ) + h)

h
= lim
h→0+

τn(µ, λn(µ) + h)

h
= − 1

λn(µ)
.
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To assemble an algebraic system for the static condensation eigenproblem, we insert (18) into (21),

(22) to arrive at

nΓ∑

p=1

NΓ
p∑

k=1

Up,k(µ, σ)B(Φp,k(µ, σ), v;µ;σ)

= τ (µ, σ)

nΓ∑

p=1

NΓ
p∑

k=1

Up,k(µ, σ)a(Φp,k(µ, σ), v;µ;σ), ∀v ∈ XS , (28)

nΓ∑

p=1

NΓ
p∑

k=1

Up,k(µ, σ)a(Φp,k(µ, σ),Φp,k(µ, σ);µ;σ) = 1. (29)

We now define our local stiffness and mass matrices Ai(µ, σ),Mi(µ, σ) ∈ RKi×Ki for component i, which

have entries

Aik′,k(µ, σ) = ai(ψi,k + bi,k(µ, σ), ψi,k′ + bi,k′(µ, σ);µ),

Mi
k′,k(µ, σ) = mi(ψi,k + bi,k(µ, σ), ψi,k′ + bi,k′(µ, σ);µ),

for 1 ≤ k, k′ ≤ Ki. We may then assemble the global system with matrices B(µ, σ),A(µ, σ) ∈ Rnsc×nsc ,

of dimension nsc =
∑nΓ

p=1NΓ
p : given a σ ∈ R and µ ∈ D, we consider the eigenproblem

B(µ, σ)V(µ, σ) = τ (µ, σ)A(µ, σ)V(µ, σ), (30)

V(µ, σ)TA(µ, σ)V(µ, σ) = 1, (31)

where

B(µ, σ) ≡ A(µ, σ)− σM(µ, σ). (32)

Assuming (2.1) holds, we can recover λn(µ) as the value of σ for which the nth eigenvalue of (30) is

zero. In practice we use Brent’s method [12], which is a combination of different direct search methods

for root finding (bisection, secant and inverse quadratic interpolation).

3. Reduced Basis Static Condensation System

3.1. Reduced Basis Bubble Approximation

In the static condensation reduced basis element (SCRBE) method [4], we replace the FE bubble

functions bi,k(µ, σ) with reduced basis approximations. These RB approximations are significantly less

expensive to evaluate (following an RB offline preprocessing step) than the original FE quantities, and

hence the computational cost associated with the formation of the (now approximate) static condensation

system is significantly reduced. We thus introduce the RB bubble function approximations

b̃i,k(µ, σ) ≈ bi,k(µ, σ) (33)

for a parameter domain (µ, σ) ∈ D × [0, σmax], where

σmax = εσ min
µ∈D

min
1≤i≤I

λi,1(µ).

9



Here εσ(< 1) is a “safety factor” which ensures that we honor the condition σ < λi,1(µ) for all 1 ≤ i ≤ I.

Next, we let

Φ̃p,k(µ, σ) = Ψp,k +
∑

i,kis.t.Pi(ki)=(p,k)

b̃i,ki(µ, σ),

and define our RB static condensation space X̃S(µ, σ) ⊂ XN as

X̃S(µ, σ) = span{Φ̃p,k(µ, σ) : 1 ≤ p ≤ nΓ, 1 ≤ k ≤ NΓ
p }.

(Note that X̃S(µ, σ) 6⊂ XS(µ, σ).) We then define the RB eigenproblem: given (µ, σ) ∈ D × [0, σmax],

find the eigenpairs (τ̃n(µ, σ), Ṽn(µ, σ)) that satisfy

B̃(µ, σ)Ṽ(µ, σ) = τ̃ (µ, σ)Ã(µ, σ)Ṽ(µ, σ), (34)

Ṽ(µ, σ)T Ã(µ, σ)Ṽ(µ, σ) = 1, (35)

where B̃(µ, σ), Ã(µ, σ) are constructed component-by-component from

Ãik′,k(µ, σ) = ai(ψi,k + b̃i,k(µ, σ), ψi,k′ + b̃i,k′(µ, σ);µ),

M̃i
k′,k(µ, σ) = mi(ψi,k + b̃i,k(µ, σ), ψi,k′ + b̃i,k′(µ, σ);µ),

for 1 ≤ k, k′ ≤ Ki, and where

B̃i(µ, σ) ≡ Ãi(µ, σ)− σM̃i(µ, σ). (36)

3.2. Reduced Basis Error Estimator

We now consider error estimation for our RB approximations. First, since X̃S(µ, σ) ⊂ XN , by the

same argument as part (i) of Proposition 2.1, we have

Corollary 3.1.

τ̃n(µ, σ) ≥ τn(µ, σ), n = 1, 2, . . . , nsc. (37)

�

We define the residual ri,k(·;µ, σ) : XNi;0 → R for 1 ≤ k ≤ Ki, and 1 ≤ i ≤ I as

ri,k(v;µ, σ) = −Bi(ψi,k + b̃i,k(µ, σ), v;µ, σ), ∀v ∈ XNi;0,

and the error bound [13]

‖bi,k(µ, σ)− b̃i,k(µ, σ)‖X,i ≤ ∆̃i,k(µ, σ) =
Ri,k(µ, σ)

αLB
i (µ, σ)

,

where

Ri,k(µ, σ) = sup
v∈XNi;0

ri,k(v;µ, σ)

‖v‖X,i

is the dual norm of the residual, and αLB
i (µ, σ) is a lower bound for the coercivity constant

αi(µ, σ) = inf
w∈XNi;0

Bi(w,w;µ, σ)

‖w‖2X,i
. (38)
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Such a lower bound can be derived by hand for simple parametric dependences, otherwise it can be

computed using a successive constraint linear optimization method [14]. It is also possible to compute

during the Offline stage different coercivity constants αki (µk, σk)1 for given sampling parameters (µk, σk),

and then a lower bound over the full parameter range is obtained by taking the minimum over the

sampling parameters αLB
i = mink α

k
i (µk, σk). This is the latter option that is used in the results section

of this paper.

We now assume that Hypothesis 2.1 holds. Suppose we have found σn, the nth “shift” such that

B̃(µ, σn) has a zero eigenvalue, i.e. we have τ̃n(µ, σn) = 0. Then our RB-based approximation to the nth

eigenvalue is λ̃n(µ) = σn. We will now develop a first order error estimator for τn(µ, σn). We have

B(µ, σn)V(µ, σn) = τn(µ, σn)A(µ, σn)V(µ, σn),

and hence with B(µ, σn) ≡ B̃(µ, σn) + δB(µ, σn), A(µ, σn) ≡ Ã(µ, σn) + δA(µ, σn), V(µ, σn) ≡ Ṽ(µ, σn) +

δV(µ, σn), we obtain

(B̃(µ, σn) + δB(µ, σn))(Ṽ(µ, σn) + δV(µ, σn)) = τn(µ, σn)(Ã(µ, σn) + δA(µ, σn))(Ṽ(µ, σn) + δV(µ, σn)).

(39)

Expansion of the above expression yields

B̃(µ, σn)δV(µ, σn) + δB(µ, σn)Ṽ(µ, σn) + δB(µ, σn)δV(µ, σn) =

τn(µ, σn)(Ã(µ, σn)Ṽ(µ, σn) + Ã(µ, σn)δV(µ, σn) + δA(µ, σn)Ṽ(µ, σn) + δA(µ, σn)δV(µ, σn)), (40)

where the identity B̃(µ, σn)Ṽ(µ, σn) = 0 has been employed. We then multiply through by Ṽ(µ, σn)T and

note that Ṽ(µ, σn)T B̃(µ, σn)δV(µ, σn) = δV(µ, σn)T B̃(µ, σn)Ṽ(µ, σn) = 0, Ṽ(µ, σn)T Ã(µ, σn)Ṽ(µ, σn) =

1 and neglect higher order terms to obtain

τn(µ, σn) ≈ Ṽ(µ, σn)T δB(µ, σn)Ṽ(µ, σn). (41)

We then have the following bound

|Ṽ(µ, σn)T δB(µ, σn)Ṽ(µ, σn)| ≤
I∑

i=1

Ki∑

k=1

I∑

j=1

Kj∑

l=1

|ṼPi(k)(µ, σn)|∆̃i,k(µ, σn)∆̃j,l(µ, σn)|ṼPj(l)(µ, σn)| ≡ ∆̃(µ, σn).

(42)

From Proposition 2.1 part (iii), we can only infer eigenvalues of (1),(2) when τn(µ, σ) = 0, hence (42)

does not give us a direct bound on the error of λ̃n(µ). However, with the assumption that ∆̃(µ, σn)→ 0

in the limit as N →∞, we see that τn(µ, σn)→ 0 and hence asymptotically we have that λ̃n(µ) converges

to λn(µ). Moreover, we can develop an asymptotic error estimator. From Proposition 2.2, we have

τn(µ, λ̃n(µ)) ≈ τn(µ, λn(µ)) + (λ̃n(µ)− λn(µ))
∂τn(µ, λn(µ))

∂σ

=
λn(µ)− λ̃n(µ)

λn(µ)
. (43)

Combining (42) and (43) gives the following asymptotic (relative) error estimator

|λn(µ)− λ̃n(µ)|
λn(µ)

. ∆̃(µ, σn). (44)

1by computing the minimum eigenvalue corresponding to (38).
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4. Port reduction

4.1. Empirical mode construction

In practice, for the basis functions of the port space ZNp , we use a simple Laplacian eigenmode

decomposition, corresponding to the eigenfunctions ζp,k of the following eigenproblem

∫

Γp

∇ζp,k · ∇v = Λp,k

∫

Γp

ζp,kv, ∀v ∈ ZNp , 1 ≤ k ≤ NΓ
p . (45)

We can truncate the Laplacian eigenmode expansion in order to reduceNΓ
p – often without any significant

loss in accuracy of the method. However, we can obtain better results by tailoring the port basis functions

to a specific class of problems. A strategy for the construction of such empirical port modes is presented

in [10]. We briefly describe this strategy here and refer the reader to [10] for further detail.

A key observation is that, in a system of components, the solution on any given interior global port

is “only” influenced by the parameter dependence of the two components that share this port and the

solution on the non-shared ports of these two components. We shall exploit this observation to explore

the solution manifold associated with a given port through a pairwise training algorithm.

Algorithm 1 Pairwise training (two components connected at global port Γp)

Spair = ∅.

for n = 1, . . . , Nsamples do

Assign random parameters σ ∈ [0, σmax] and µi ∈ Di to component i = 1, 2

(note the value of σ is the same for both components).

On all non-shared ports, assign random boundary conditions.

Solve B(u(µ, σ), v;µ;σ) = 0, ∀v ∈ XS(µ, σ)

Extract solution u|Γp on shared port.

Subtract the average and add to snapshot set:

Spair ← S ∪

(
u|Γp

− 1

|Γp|

∫

Γp

u|Γp

)
.

end for

To construct the empirical modes we first identify groups of local ports on the components which

may interconnect; the port spaces for all ports in each such group must be identical. For each pair of

local ports within each group (connected to form a global port Γp), we execute Algorithm (1): we sample

this I = 2 component system many (Nsamples) times for random (typically uniformly or log-uniformly

distributed) parameters over the parameter domain and for random boundary conditions on non-shared

ports. For each sample we extract the solution on the shared port Γp; we then subtract its average and

add the resulting zero-mean function to a snapshot set Spair. Note that by construction all functions in

Spair are thus orthogonal to the constant function.

Upon completion of Algorithm 1 for all possible component connectivity within a library, we form a

larger snapshot set Sgroup which is the union of all the snapshot sets Spair generated for each pair. We

12



then perform a data compression step: we invoke proper orthogonal decomposition (POD) [15] (with

respect to the L2(Γp) inner product). The output from the POD procedure is a set of mutually L2(Γp)-

orthonormal empirical modes that have the additional property that they are orthogonal to the constant

mode.

4.2. Port-reduced system

In practice we use SCRBE – RB approximations for the bubble functions – but as we will see in

the result section, the error introduced by RB approximation is very small and negligible compared to

the error due to port reduction. As a consequence, we describe the port reduction procedure starting

from the “truth” static condensation system (30), but we will in practice apply the port reduction to

the SCRBE system (34). We recall that on port p the full port space is given as

ZNp = {ζp,1, · · · , ζp,NΓ
p
}. (46)

For each port, we shall choose a desired port space dimension nA,p such that 1 ≤ nA,p ≤ NΓ
p . We shall

then consider the basis functions ζk, 1 ≤ k ≤ nA,p, as the active port modes (hence subscript A); we

consider the nI,p = NΓ
p − nA,p remaining basis functions ζk, nA,p + 1 ≤ k ≤ NΓ

p , as inactive (hence

subscript I). Note that span{ζp,1, . . . , ζp,nA,p} ⊆ ZNp . We then introduce

nA ≡
nΓ∑

p=1

nΓ
A,p, nI ≡

nΓ∑

p=1

nΓ
I,p, (47)

as the number of total active and inactive port modes, respectively; and nSC = nA + nI is the total

number of port modes in the non-reduced system.

Next, we assume a particular ordering of the degrees of freedom in (30): we first order the degrees

of freedom corresponding to the nA active system port modes and then by the degrees of freedom

corresponding to the nI inactive system port modes. We may then interpret (30) as


BAA(µ, σ) BAI(µ, σ)

BIA(µ, σ) BII(µ, σ)


V(µ, σ) = τ(µ, σ)


AAA(µ, σ) AAI(µ, σ)

AIA(µ, σ) AII(µ, σ)


V(µ, σ), (48)

where the four blocks in the matrices correspond to the various couplings between active and inactive

modes; note that BAA(µ) ∈ RnA×nA and that BII(µ) ∈ RnI×nI . Our port-reduced approximation τ̂(µ, σ)

shall be given as the solution to the nA × nA system

BAA(µ, σ)VA(µ, σ) = τ̂(µ, σ)AAA(µ, σ)VA(µ, σ),

VA(µ, σ)TAAA(µ, σ)VA(µ, σ) = 1 (49)

in which we may discard the (presumably large) BII(µ, σ) and AII(µ, σ) blocks; however the BIA(µ, σ)-

block is required later for residual evaluation in the context of a posteriori error estimation.
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4.3. Port reduction error estimator

We put a ·̂ on top of all the port reduced quantities. Suppose we have found σn such that τ̂n(µ, σn) =

0 with eigenvector of size nSC in the non-reduced space

V̂n(µ, σn) =


 VA,n(µ, σn)

0


 .

We can expand V̂n(µ, σn) in terms of the eigenvectors Vm(µ, σn) of the non reduced space

V̂n(µ, σn) =

nSC∑

m=1

αm(µ, σn)Vm(µ, σn).

Since τ̂n(µ, σn) = 0, we can reasonably assume that |τn(µ, σn)| = min
1≤m≤nSC

|τm(µ, σn)|. We now look at

the following residual

B(µ, σn)V̂n(µ, σn) =

nSC∑

m=1

αm(µ, σn)B(µ, σn)Vm(µ, σn)

=

nSC∑

m=1

αm(µ, σn)τm(µ, σn)A(µ, σn)Vm(µ, σn)

so using the A(µ, σn) orthogonality of the Vm(µ, σn) we obtain

‖B(µ, σn)V̂n(µ, σn)‖2A(µ,σn)−1 =

nSC∑

m=1

|τm(µ, σn)|2‖αm(µ, σn)A(µ, σn)Vm(µ, σn)‖2A(µ,σn)−1

≥ |τn(µ, σn)|2
nSC∑

m=1

‖αm(µ, σn)A(µ, σn)Vm(µ, σn)‖2A(µ,σn)−1

= |τn(µ, σn)|2‖
nSC∑

m=1

αm(µ, σn)A(µ, σn)Vm(µ, σn)‖2A(µ,σn)−1

= |τn(µ, σn)|2.

where we use the Euclidean norm derived from the A(µ, σn)−1 scalar product. We thus obtain the

following error bound

∆̂(µ, σn) ≡ ‖B(µ, σn)V̂n(µ, σn)‖A(µ,σn)−1 ≥ |τn(µ, σn)|.

Finally, we recover an error estimator for the eigenvalue λn(µ) of the original eigenproblem. Assuming

λ̂n(µ) is close to λn(µ), we can then use Proposition 2.2 as in (43), and we get the relative error estimator

|λn(µ)− λ̂n(µ)|
λn(µ)

. ∆̂(µ, σn).

It is important to note that ∆̂(µ, σn) will only decrease linearly in the residual, whereas the actual

eigenvalue error is expected to decrease quadratically in the residual. This is due to the fact that port

reduction can be viewed as a Galerkin approximation over a subspace of the skeleton space XS(µ, σ), and

in that framework several a priori and a posteriori error results demonstrate the quadratic convergence

of the eigenvalue [16]. As a consequence the effectivity of the error estimator ∆̂(µ, σn) is expected to

decrease with nA,p.
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Note that

B(µ, σn)V̂n(µ, σn) =


 0

BIA(µ, σn)VA,n(µ, σn)


 ,

and so the computation of the residual requires the additional assembly of BIA(µ, σn), which does not

generate an important extra computation since in practice we will consider nA � nI. On the contrary,

the computation of the norm ‖ · ‖A(µ,σn)−1 requires the assembly and inversion of A(µ, σn), the full

Schur complement stiffness matrix, which would potentially eliminate any speed-up obtained by the port

reduction. This computational issue is resolved by using an upper bound for ‖·‖A(µ,σn)−1 which is based on

a non-conforming version A′(µ, σn) of the stiffness operator and a parameter independent preconditioner:

the former permits online computation of small matrice inverses locally on each component, and the latter

allows us to precompute non-reduced matrices and their Cholesky decompositions in an offline stage.

The entire procedure is described in detail in [10].

5. Numerical results

5.1. Linear elasticity

We consider linear elasticity in a non-dimensional form: we nondimensionalize space with respect to

a length d0 which will correspond to the beam width in the following, we nondimensionalize the Young’s

modulus E with respect to a reference value E0, and we nondimensionalize time with respect to
√

ρd0

E0
,

where ρ is the mass density. The non dimensional linear elasticity free vibration equation then reads

−AU =
∂2U

∂t2
, (50)

where A is a linear second order differential operator in space and U(x, t) is the displacement vector.

Assuming that the free vibration solution is of the form U(x, t) = u(x)cos(ωt), the problem is equivalent

to solving the eigenproblem

Au = ω2u. (51)

In variational form, the operator A corresponds to the bilinear form [13]

a(w, v;µ) ≡
∫

Ω

Cijkl(µ)εij(w)εkl(v) (52)

where we assume summation on repeated indices; a(·, ·) is defined on the space of admissible displacements

V =
{
v = (v1, v2, v3)|vi ∈ H1(Ω); vi = 0 on Γ0 ⊂ ∂Ω

}
, and εij(v) = 1

2 (∂ivj + ∂jvi). We will consider

isotropic materials, in which case the coefficents Cijkl(µ) are functions of only two parameters: Poisson’s

ratio ν and Young’s modulus E. In the following we always fix ν = 0.3, and allow E to vary, hence E is

part of the vector of parameters µ. More precisely, the parametric dependence reads

Cijkl(µ) =
Eν

(1 + ν)(1− 2ν)
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk).

We also define the mass bilinear form

m(w, v;µ) ≡
∫

Ω

wivi. (53)
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Figure 1: The component library: a beam (left) and a connector (right). Components can connect at

square ports shown in red. All ports have the same shape and same discretization.

The eigenproblem in variational form finally reads: find λ(µ) ∈ R>0 and u(µ) ∈ V such that

a(u(µ), v;µ) = λ(µ)m(u(µ), v;µ), ∀v ∈ V, (54)

m(u(µ), u(µ);µ) = 1. (55)

Note that λ(µ) = ω2(µ) – the eigenvalue is the frequency squared.

5.2. Component library

We consider a linear elasticity library of two components shown in Figure 1: a beam and a connector.

The FE hexahedral meshes are shown in Figure 1, and in all the following we use first order approximation

with trilinear elements. The components can connect at square ports of dimension 1 × 1 with NΓ
p =

3× 36 = 108 degrees of freedom. The beam has two parameters: the Young’s modulus E ∈ [0.5, 2] and

the length scaling s ∈ [0.5, 2], where the beam is of length 5s. The connector has one parameter, the

Young’s modulus E ∈ [0.5, 2]. Finally, for the shift parameter σ, we consider the range [0, 0.01], based on

the fact that the local minimum eigenvalues of the two components are larger than 0.01 for the previous

E and s parameter ranges. For each component, we build RB bubble spaces of size N = 10 using a

Greedy algorithm [17], for the parameter ranges previously defined. We also perform a pairwise training

for the component pair beam-connector to build empirical port modes as described in Section 4.1; and

we build a parameter independent preconditioner (necessary for the computation of ∆̂) using parameter

values E = 0.5 and s = 0.5.

5.3. Simple beam

We first present a simple example where we compare with beam theory to demonstrate that the

FE resolution is adequate and that we capture the different modes. We consider a clamped-clamped

uniform beam of square section, with thickness d = 1 and length L = 40, and Young’s modulus E = 1.

Table 1 presents the first eight eigenvalues obtained by different methods: Euler Bernoulli model [18],

Timoshenko model [18], global FEM and SCRBE with and without port reduction (in which the beam

is constructed as the concatenation of eight beam components). The eigenvalues (which we recall are
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Figure 2: The fourth (pure bending) and fifth (pure torsion) beam eigenmodes.

the frequencies squared) are quite small as the beam is of large aspect ratio. The SCRBE results are

obtained by connecting eight beam components together with length parameter s = 1, using RB spaces

of size N = 10; no port reduction corresponds to nA,p = NΓ
p = 108, and for port reduction we use

nA,p = 20 active port modes. The global FEM results are obtained using a global mesh corresponding to

eight beam component meshes stitched together, hence SCRBE and FEM are based on the same mesh

and FE resolution.

We observe that the beam models do not capture some eigenvalues; these correspond to torsional

modes that are not taken into account in Euler Bernoulli and Timoshenko models which consider only

bending displacement. Note that for a beam with a square section, the bending and torsion is decoupled

and the eigenmodes are either pure bending or pure torsion (see Figure 2). For the modes that are pure

bending (λ1, λ2, λ3, λ4, λ6, λ7), we observe a good agreement between all methods. Note that it is well

known that Euler Bernoulli is better for long wavelength and/or slender beams; Timoshenko is better

for shorter wavelength and/or shorter beams. Not surprisingly, the FE (and SCRBE) eigenvalues are

closer to Euler Bernoulli for lower modes and closer to Timoshenko for higher modes. The SCRBE (with

or without port reduction) and global FEM give results that have an actual relative difference less than

10−4. For the SCRBE without port reduction, we also give the relative error estimate ∆̃ in Table 1,

which corresponds to the relative error between the SCRBE and the “truth” static condensation: it is

at most 10−6, which confirms that the error introduced by RB is negligible. For the SCRBE with port

reduction and nA,p = 20, the relative error estimate is ∆̂ and corresponds to the relative error between

SCRBE with and without port reduction: it is about 10−2, which overstimates the actual relative error,

but nonetheless indicates a very good agreement between SCRBE eigenvalues with and without port

reduction. We also observe that the SCRBE does capture all the torsional modes. Note finally that

the SCRBE eigenvalues are obtained using a root finding algorithm: in practice we set the tolerance2

to 10−10 as this is a couple orders of magnitude smaller than the RB relative error estimator ∆̃, thus

making the root finding error negligible with respect to RB error (and also port reduction error).

5.4. Bridge structure

We are now ready to consider larger systems with more complicated connections which will better

exercise the RB and port reduction capabilities. Towards this end, we consider a system of 30 components,

corresponding to a bridge structure, shown in Figure 3 with its first three eigenmodes; in that case we

choose E = 0.5 and s = 1 for all components. In the following, we will provide systematic analysis of

2the tolerance applies to τ̃n(µ, σ) = 0, hence it corresponds to a relative tolerance for λ̃n(µ).
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λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Euler Bernoulli 1.6294e-05 1.2381e-04 4.7583e-04 1.3003e-03 — 2.9016e-03 5.6603e-03 —

Timoshenko 1.6204e-05 1.2224e-04 4.6524e-04 1.2560e-03 — 2.7622e-03 5.2991e-03 —

Global FEM 1.6612e-05 1.2489e-04 4.7327e-04 1.2708e-03 2.0732e-03 2.7775e-03 5.2916e-03 6.1912e-03

SCRBE nA,p = 108 1.6612e-05 1.2489e-04 4.7327e-04 1.2708e-03 2.0732e-03 2.7775e-03 5.2916e-03 6.1912e-03

SCRBE nA,p = 20 1.6612e-05 1.2489e-04 4.7327e-04 1.2708e-03 2.0732e-03 2.7775e-03 5.2916e-03 6.1912e-03

∆̃ 1.4418e-06 2.0695e-07 7.9612e-08 9.6913e-08 5.4576e-09 4.1418e-07 1.0262e-06 8.8249e-09

∆̂ 5.5488e-03 7.3845e-03 8.4207e-03 7.4811e-03 3.3180e-02 8.3262e-03 8.9995e-03 4.7761e-03

Table 1: Eigenvalues for a clamped-clamped uniform beam of square section, with thickness d = 1 and

length L = 40. The estimators ∆̃ and ∆̂ correspond relative errors.

Figure 3: A bridge structure: all of the “open ports” of beam components are clamped. The first three

displacement eigenmodes are shown.
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Figure 4: First eigenvalue convergence with respect to the size N of RB spaces.

the RB and port reduction convergence and also performance of the a posteriori error estimates; finally,

we will report detailed timings to confirm the computational advantage for large problems.

We first show in figure 4 the convergence of the first eigenvalue with respect to the size N of the RB

spaces used for bubble approximations. Note that we did not compute the eigenvalue with the “truth”

static condensation, because it would be very computationally intensive, hence the reference value for

λ is the value obtained with a global FEM, denoted λFE
3. We observe that we obtain exponential

convergence, hence we provide a significant improvement compared to standard CMS approaches. We

also observe that the RB relative error estimator ∆̃ is accurate – it overestimates the actual error by at

most one order of magnitude; moreover, for a sufficiently large N , the RB relative error estimator ∆̃ is

very small, hence justifying the fact that we can neglect the error due to RB error approximation when

introducing port reduction.

We now fix N = 10 and consider port reduction. We show in Figure 5 the convergence of the first

eigenvalue with respect to the number of port modes, for both the regular Laplacian modes and the

empirical modes: the advantage obtained with the empirical modes is obvious, and we also observe that

∆̂ does not converge as fast as the true error, which is due to the fact that it is only a linear function of

the norm of the residual, as explained in Section 4.3.

We now consider computational savings compared to a global FEM approach. We report in table 2 the

first eigenvalue computation time and error bounds with and without port reduction; in table 3 the same

results are reported for the tenth eigenvalue computation. Note that we use the Krylov-Schur method

3The global FEM eigenvalue is not expected to be exactly the same as what would be obtained with FE static con-

densation – in theory they should be the same, but the different computational paths lead to different numerical results –

hence it explains why
|λFE−λ̃|
λFE

does not converge to zero, and why ∆̃ gets smaller than
|λFE−λ̃|
λFE

for N big enough.
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Figure 5: First eigenvalue convergence with respect to the number nA,p of active port modes: blue cor-

responds to Laplacian eigenmodes (“Lap”), red corresponds to empirical modes (“Emp”). The reference

eigenvalue λ̃ is the one obtained for nA,p = NΓ
p = 108.

with the shift and invert transform, provided by the SLEPC library [19]. For SCRBE, we use a direct LU

solver for matrix inversion (thanks to the moderate number of dofs); for FE we use an iterative solver:

conjugate gradient with incomplete Cholesky preconditioner (1 cpu) or Jacobi preconditioner (16 cpu).

For the first eigenvalue, without port reduction, the SCRBE yields a speed-up factor of 60 compared

to FE with 1 cpu, and a speed-up factor of 11 compared to FE with 16 cpu. For the tenth eigenvalue,

the decrease in computational time is even larger – 112 compared to FE with 1 cpu and 23 compared

to FE with 16 cpu. Computing eigenvalues that are not at an extremity of the spectrum is a more

difficult problem, and in that case the computational advantage of the SCRBE is even more obvious. We

observe that the relative difference between the SCRBE and FE eigenvalues is less than 10−6. We now

add port reduction: we retain only some of the port (empirical) modes for the eigenproblem solution.

When retaining about a fifth of the port modes (nA,p = 20), the speed-up factors for the first and tenth

eigenvalues are 960 and 2500 compared to FE with 1 cpu, 180 and 520 compared to FE with 16 cpu.

The SCRBE eigenvalues are again within a 10−6 relative distance from the FE eigenvalues, and the port

reduction relative error estimator predicts a 1% relative error for the port-reduced eigenvalues – despite

overestimation of the true error, this 1% relative error estimate is more than sufficient in an engineering

context. Note that the SCRBE can be easily parallelized thanks to the component assembly description,

but in this paper the SCRBE computations are done on a single CPU, hence the comparison of global

FEM with 16 cpu to SCRBE with 1 cpu is strongly biased in favor of FEM.

For our formulation to remain well posed, we can only capture eigenvalues that lie in the σ range

[0, 0.01]. Despite this limitation, we are able to compute up to λ50 = 0.00994974, which is more than
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number dofs 1st eigenvalue ∆̃(µ, σ) ∆̂(µ, σ) timing

Global FEM (1 cpu) N = 267792 0.000108903 32 min

Global FEM (16 cpu) N = 267792 0.000108903 6 min

SCRBE nA,p = NΓ
p = 108 nA = nSC = 6480 0.000108903 1.36e-08 32s

SCRBE nA,p = 20 nA = 1200 0.000108903 1.16% 2s

Table 2: First eigenvalue computation for a bridge assembled as 30 components (Figure 3). E = 0.5 and

s = 1 everywhere.

number dofs 10th eigenvalue ∆̃(µ, σ) ∆̂(µ, σ) timing

Global FEM (1 cpu) N = 267792 0.00194414 125 min

Global FEM (16 cpu) N = 267792 0.00194414 26 min

SCRBE nA,p = NΓ
p = 108 nA = nSC = 6480 0.00194414 2.50e-08 67s

SCRBE nA,p = 20 nA = 1200 0.00194415 1.67% 3s

Table 3: Tenth eigenvalue computation for a bridge assembled as 30 components (Figure 3). E = 0.5

and s = 1 everywhere.

enough in this structural analysis case where only the lowest frequency modes are likely to resonate.

We demonstrated that SCRBE has a computational advantage relative to FE, but the same decrease

in computational time could in theory be obtained with CMS. One crucial advantage of SCRBE with

respect to CMS (in addition to convergence rate) is its flexibility with respect to parameter variations.

Thanks to the RB approximations at the component level, we can modify the component parameters and

recompute the eigenproblem solution seamlessly. We show in Figure 6 the third eigenmode for different

parameter variations: we can modify some of the beam lengths (Figure 6a), or we can make one half of

the bridge stiffer than the other (Figure 6b).

(a) Various beam lengths. (b) Various Young’s modulus.

Figure 6: Comparison of the third eigenmode for different parameters. Left: for the middle beams,

s = 0.7; for the beams adjacent to the middle beams, s = 1.3; for all other beams and all support beams,

s = 1. Right: in the first half of the bridge E = 2, in the second half E = 0.5.
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Figure 7: A notched beam component.

Original system Notched beam Disconnected beam

λ1 0.000108903 0.000109415 0.000107512

λ2 0.000192330 0.000192394 0.000152107

λ3 0.000351258 0.000351093 0.000336273

λ4 0.000502429 0.000505191 0.000365281

λ5 0.001227793 0.001206475 0.000874600

Table 4: Eigenvalue comparison when introducing defect in a beam.

Finally, one could argue that the examples presented in this section have relatively simple geometries

and that the same results could be obtained by assembling components based on beam models, without

solving the full linear elasticity equations. But one of the advantages of our approach (and the CMS in

general) is its ability to handle arbitrary component shapes, allowing to tackle problems that are out of

reach for beam and/or plate models. As an example, we introduce a notched beam component (Figure 7)

in our original bridge system: consequently, a new mode appears between the ninth and tenth eigenmodes

of the original system, as seen in Figure 8. This change of behaviour would be impossible to predict only

using beam models. To emphasize the latter, we compare our notched beam case to a “disconnected

beam” case (with zero-thickness crack, Figure 9c) that would be the only possible modeling of a defect

with beam models: table 4 clearly shows that a notched beam introduce subtle changes in the spectrum

whereas a disconnected beam completely modifies the spectrum.
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